3.80 \(\int \frac {\sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=107 \[ -\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {5 \cos (c+d x)}{16 a d (a \sin (c+d x)+a)^{3/2}}+\frac {\cos (c+d x)}{4 d (a \sin (c+d x)+a)^{5/2}} \]

[Out]

1/4*cos(d*x+c)/d/(a+a*sin(d*x+c))^(5/2)-5/16*cos(d*x+c)/a/d/(a+a*sin(d*x+c))^(3/2)-5/32*arctanh(1/2*cos(d*x+c)
*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2750, 2650, 2649, 206} \[ -\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {5 \cos (c+d x)}{16 a d (a \sin (c+d x)+a)^{3/2}}+\frac {\cos (c+d x)}{4 d (a \sin (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-5*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) + Cos[c + d*x]/
(4*d*(a + a*Sin[c + d*x])^(5/2)) - (5*Cos[c + d*x])/(16*a*d*(a + a*Sin[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2750

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx &=\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac {5 \int \frac {1}{(a+a \sin (c+d x))^{3/2}} \, dx}{8 a}\\ &=\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac {5 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}+\frac {5 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx}{32 a^2}\\ &=\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac {5 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac {5 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac {5 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.19, size = 196, normalized size = 1.83 \[ \frac {\left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right ) \left (-8 \sin \left (\frac {1}{2} (c+d x)\right )-5 \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^3+10 \sin \left (\frac {1}{2} (c+d x)\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^2+4 \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )+(5+5 i) (-1)^{3/4} \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^4 \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac {1}{4} (c+d x)\right )-1\right )\right )\right )}{16 d (a (\sin (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(-8*Sin[(c + d*x)/2] + 4*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + 10*Sin
[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 - 5*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 + (5 + 5*I)*
(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4))/(
16*d*(a*(1 + Sin[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [B]  time = 0.51, size = 318, normalized size = 2.97 \[ \frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) - 4\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 4\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \, {\left (5 \, \cos \left (d x + c\right )^{2} + {\left (5 \, \cos \left (d x + c\right ) + 4\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right ) - 4\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d + {\left (a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d\right )} \sin \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(5*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + (cos(d*x + c)^2 - 2*cos(d*x + c) - 4)*sin(d*x + c) - 2*co
s(d*x + c) - 4)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - si
n(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*cos(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (cos(d*x + c
) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4*(5*cos(d*x + c)^2 + (5*cos(d*x + c) + 4)*sin(d*x + c) + cos(d*x +
 c) - 4)*sqrt(a*sin(d*x + c) + a))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 - 2*a^3*d*cos(d*x + c) - 4*a
^3*d + (a^3*d*cos(d*x + c)^2 - 2*a^3*d*cos(d*x + c) - 4*a^3*d)*sin(d*x + c))

________________________________________________________________________________________

giac [B]  time = 0.79, size = 457, normalized size = 4.27 \[ \frac {\frac {5 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} + \sqrt {a}\right )}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )} - \frac {2 \, {\left (5 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{7} - 29 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} \sqrt {a} - 17 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{5} a + 13 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} a^{\frac {3}{2}} - 9 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{3} a^{2} + 9 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a^{\frac {5}{2}} + 13 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )} a^{3} - a^{\frac {7}{2}}\right )}}{{\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )} \sqrt {a} - a\right )}^{4} a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}}{16 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/16*(5*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + sqrt(
a))/sqrt(-a))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c) + 1)) - 2*(5*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1
/2*d*x + 1/2*c)^2 + a))^7 - 29*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*sqrt(a) -
 17*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^5*a + 13*(sqrt(a)*tan(1/2*d*x + 1/2*c)
 - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*a^(3/2) - 9*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*
c)^2 + a))^3*a^2 + 9*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a^(5/2) + 13*(sqrt(
a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*a^3 - a^(7/2))/(((sqrt(a)*tan(1/2*d*x + 1/2*c) -
 sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))
*sqrt(a) - a)^4*a^2*sgn(tan(1/2*d*x + 1/2*c) + 1)))/d

________________________________________________________________________________________

maple [B]  time = 1.00, size = 193, normalized size = 1.80 \[ \frac {\left (5 \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) \sqrt {2}\, a^{3} \left (\cos ^{2}\left (d x +c \right )\right )-10 \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{3} \sin \left (d x +c \right )+10 \left (a -a \sin \left (d x +c \right )\right )^{\frac {3}{2}} a^{\frac {3}{2}}-12 \sqrt {a -a \sin \left (d x +c \right )}\, a^{\frac {5}{2}}-10 \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{3}\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{32 a^{\frac {11}{2}} \left (1+\sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x)

[Out]

1/32/a^(11/2)*(5*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)*a^3*cos(d*x+c)^2-10*2^(1/2)*arcta
nh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^3*sin(d*x+c)+10*(a-a*sin(d*x+c))^(3/2)*a^(3/2)-12*(a-a*sin(d*
x+c))^(1/2)*a^(5/2)-10*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^3)*(-a*(sin(d*x+c)-1))^(1
/2)/(1+sin(d*x+c))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sin \left (c+d\,x\right )}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)/(a + a*sin(c + d*x))^(5/2),x)

[Out]

int(sin(c + d*x)/(a + a*sin(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin {\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Integral(sin(c + d*x)/(a*(sin(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________